

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Webber Gage Division / L.S. Starrett Co.

24500 Detroit Road Cleveland, OH 44145 Mr. Carl Stearns

Phone: 440-835-0001 Fax: 440-892-9555 E-mail: webber@starrett.com

CALIBRATION LABORATORIES

NVLAP LAB CODE 200038-0

NVLAP Code: 20/A01 ANSI/NCSL Z540-1-1994; Part 1 Compliant

DIMENSIONAL

NVLAP Code: 20/D01

Angular

Range Best Uncertainty (±) note 1 Remarks

Angle Gage Blocks

up to 6 inches in length ± 0.5 arc seconds by comparison

Optical Cubes

up to 4 inches in length ± 0.5 arc seconds By comparison or closure method

when possible.

Optical Polygons

up to 12 inches in diameter ± 1.0 arc seconds by comparison

Regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 18, 24, 36, or 72

sides.

2007-01-01 through 2007-12-31

Effective dates For the National Institute of Standards and Technology

Page 1 of 3

National Voluntary Laboratory Accreditation Program

CALIBRATION LABORATORIES

NVLAP LAB CODE 200038-0

<i>NVLAP Code</i> : 20/D03

Gage Blocks

Best Uncertainty (±) notes 1, 2, 3	Remarks
1.35 µin ^{note 6}	Master Grade Calibration
$0.0335~\mu\mathrm{m}^{note~6}$	Master Grade Calibration
$(0.65 + 0.7 \text{ L}) \mu in^{note 6}$	Master Grade Calibration
$(0.016 \pm 0.7 \text{ L}) \mu\text{m}^{\textit{note 6}}$	Master Grade Calibration
$(3.5 + 0.25 L) \mu in$	Master Grade Calibration
$(0.09 + 0.25 L) \mu m$	Master Grade Calibration
$(1.4 + 0.6 \text{ L}) \mu in^{note 4}$	Commercial Grade Calibration
· · · · · · · · · · · · · · · · · · ·	Commercial Grade Calibration
$(6.0 + 0.3 \text{ L}) \mu \text{in}$	Commercial Grade Calibration
$(0.15 + 0.3 \text{ L}) \mu\text{m}$	Commercial Grade Calibration
2.2 µin	Master Grade Calibration
0.055 μm	Master Grade Calibration
$(1.6 + 0.6 L) \mu in$	Master Grade Calibration
$(0.04 + 0.06 L) \mu m$	Master Grade Calibration
$(6.0 + 0.35 \text{ L}) \mu \text{in}$	Master Grade Calibration
$(0.15 + 0.35 L) \mu m$	Master Grade Calibration
	1.35 μ in ^{note 6} 0.0335 μ m ^{note 6} (0.65 + 0.7 L) μ in ^{note 6} (0.016 + 0.7 L) μ m ^{note 6} (3.5 + 0.25 L) μ in (0.09 + 0.25 L) μ m (1.4 + 0.6 L) μ in ^{note 4} (0.035 + 0.6 L) μ m ^{note 5} (6.0 + 0.3 L) μ in (0.15 + 0.3 L) μ m

NVLAP Code: 20/D05

Step Gages

Calibration of Webber Style Step Gages

Range	Best Uncertainty (±) notes 1, 2, 3	Remarks
to 85 in	$(10 + 2.0 L) \mu in$	Commercial Grade
to 2150 mm	(0.25 + 0.002 L) mm	Commercial Grade

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

Page 2 of 3

National Voluntary Laboratory Accreditation Program

CALIBRATION LABORATORIES

NVLAP LAB CODE 200038-0

NVLAP Code: 20/D08 Optical Reference Planes

RangeBest Uncertainty $(\pm)^{note 1}$ Remarksup to 6 inches in diameter $\pm 3 \mu in$ by comparison

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

^{1.} Represents an expanded uncertainty using a coverage factor, k = 2, at an approximate level of confidence of 95 %.

^{2.} Approximate value. Actual value determined by the test statistics.

^{3.} L is in inches or meters as appropriate.

^{4.} Uncertainty not less than 2.0 μin.

^{5.} Uncertainty not less than 0.05 μm.

^{6.} Best uncertainty is for gage blocks of chrome-carbide material. Best uncertainty for materials other than chrome-carbide may be approximately 40 % larger.